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Gonadal hormones are linked to mechanisms that govern appeti-
tive behavior and its suppression. Estrogens are synthesized from
androgens by the enzyme aromatase, highly expressed in the
ovaries of reproductive-aged women and in the brains of men and
women of all ages. We measured aromatase availability in the
amygdala using positron emission tomography (PET) with the aro-
matase inhibitor [11C]vorozole in a sample of 43 adult, normal-
weight, overweight, or obese men and women. A subsample of
27 also completed personality measures to examine the relation-
ship between aromatase and personality traits related to self-
regulation and inhibitory control. Results indicated that aromatase
availability in the amygdala was negatively associated with body
mass index (BMI) (in kilograms per square meter) and positively
correlated with scores of the personality trait constraint indepen-
dent of sex or age. Individual variations in the brain’s capacity to
synthesize estrogen may influence the risk of obesity and self-
control in men and women.
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Obesity, defined as having a body mass index (BMI) of 30 or
more, is a major public health problem affecting the quality

of life and life expectancy of millions of individuals (1–4). The
causes of obesity are complex (5, 6), and despite significant in-
vestment in behavioral and public health measures focused on
intervention and prevention (7–9), the prevalence of obesity
continues to rise (10) and most treatment approaches have only
a modest short-term benefit (e.g., ref. 6). Sex hormones are
known to influence adiposity in both men and women through
brain as well as peripheral (11) mechanisms. Estradiol is a well-
characterized anorexic agent, while androgens appear to have
the opposite effect (reviewed in ref. 12). Estrogenic stimulation
has been shown to inhibit feeding behavior in rodents, primarily
through estrogen receptor α (ERα), in several brain regions in-
cluding the extended amygdala (12–16). In addition to direct
effects on ingestive behavior, central estrogenic effects also
mediate a range of neurocognitive traits (17, 18), in particular
inhibitory behavior in the context of uncertainty or stress (19,
20), which may contribute to individual differences in feeding
behavior and self-control (21–23). The latter hypothesis is sup-
ported by recent reports linking personality traits related to self-
control to amygdala levels of aromatase, the last and obligatory
enzyme in the biosynthesis of estrogens from androgenic pre-
cursors (24, 25).
Aromatase activity in the human fetal brain was described in

the early 1970s (26). However, it took several decades for the
presence and activity of aromatase in the adult human and ani-
mal brain and other organs to be described (27, 28) and for its
contributions to human physiology (29) and specific estrogen
effects on the brain, including hippocampal integrity (30),
memory (31), and aggression (32, 33) to be appreciated.
The possible contribution of regional aromatase in the brain

and its resultant brain region-specific estrogen production in the

context of human obesity has not been investigated to date. The
amygdala is a brain region that has been shown to contain very
high levels of aromatase in rodents, monkeys, and humans (27,
28, 34, 35). It is central to the control of emotional arousal and
has been implicated in control of feeding behavior in animals
(36–41). In humans, the amygdala has been shown to be involved
in hunger-enhanced memory for food stimuli, cued appetitive
response to food (42), and cognitive inhibition of brain activation
elicited by food stimulation (43). Functional imaging studies
support activation of these amygdala networks when viewing food/
eating images, especially when hungry (44–47), and their dysre-
gulation among obese men and women. Consequently, the
amygdala offers a viable target for local brain estrogen to influ-
ence the effective neuronal circuitry that underlies cue respon-
sivity and decision making in response to food environments.
Here, we compared aromatase availability in the amygdala, mea-

sured with positron emission tomography (PET) and the aromatase-
specific radiotracer [11C]vorozole (34, 35), in otherwise-healthy
obese, overweight, and healthy-weight men and women. We hy-
pothesized a negative relationship between brain aromatase avail-
ability, as measured by [11C]vorozole in the amygdala, and BMI,
because of the amygdala’s specific role in feeding-related memory
(46), food preference (48), ability to override hypothalamic signaled
satiety (38–40), and estrogen sensitive function (47). Consistent with
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this hypothesis, we further examined the relationship between
aromatase availability and trait level constraint in a subset of the
sample. We predicted a positive relationship between amygdala
aromatase and constraint, consistent with findings that obese in-
dividuals generally show higher trait levels of disinhibition and
food cue impulsivity (47). These deficits in self-control are im-
plicated in the individual risk found in a growing worldwide obe-
sogenic environment (49).

Results
The participants (n = 43) were on average 40.4 ± 14.2 y old with
a BMI of 28.1 ± 6.8 kg/m2. Table 1 summarizes differences in

study variables by sex. A sex-by-weight category two-way ANOVA
indicated healthy-weight women (n = 9, 42 ± 18 y old) and men
(n = 7, 38.8 ± 17.9 y old,) overweight women (n = 8, 37.2 ± 11.5)
and men (n = 7, 43.3 ± 11.7 y old), and obese women (n = 7,
43.4 ± 15.8) and men (n = 5, 36 ± 8.0 y old) did not significantly
differ on age by sex (F = 0.13, P = 0.72) or weight category (F =
0.015, P = 0.98).
Regression models indicated moderate negative relationships

between amygdala aromatase availability and BMI (β = −8.40,
SE = 2.18, P < 0.001) when controlling for age and sex [F(4,38) =
7.06, P < 0.0001, adjusted R2 = 0.37]. As summarized in Fig. 1,
slopes did not significantly differ between men and women
(β = −0.19, SE = 6.84, P = 0.98). Circulating testosterone and
estrogen were not predictive of BMI and did not significantly
improve the fit to the model.
Amygdala aromatase availability in men and women (n = 27)

positively correlated with individual differences in the trait con-
straint (β = 4.94, SE = 2.24, P < 0.05), and this relationship did not
differ by sex (β = −3.43, SE = 12.10, P = 0.78). Fig. 2 summarizes
the regression model. Aromatase availability explained 15.5% of
the variance (Fig. 2) in constraint, controlling for age and sex.
Table 2 summarizes correlations by gender for constraint and its
component traits: Harm-Avoidance, Control, and Traditionalism.

Table 1. Comparison between men and women on aromatase
availability, age, and personality trait constraint

Men (n = 12) Women (n = 15)

Age 41.2 ± 16.4 37.5 ± 16.8
Aromatase in amygdala (VT) 2.8 ± 0.60 3.0 ± 0.82
Constraint 54.3 ± 8.0 56.5 ± 7.7

Note. There were no significant differences between groups (>0.05).
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Fig. 1. [11C]Vorozole in amygdala and body mass index (BMI) in men and women. The negative relationship between BMI (in kilograms per square meter)
and aromatase availability (VT) in amygdala showed no significant difference between men and women. The gray bands represent 95% confidence intervals.
VT, total volume of distribution.
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Discussion
Using a combination of in vivo imaging and neuropsychology, we
show that aromatase availability in the amygdala, representing
estrogen synthesis capacity in this region, is significantly and
negatively correlated with BMI in healthy men and women.
Aromatase availability in the amygdala also positively correlated
with scores on the personality trait constraint as measured by the
Multidimensional Personality Questionnaire (MPQ) (50). Many
personality theories consider the personality construct of con-
straint (related to behavioral disinhibition) as a key component of
human behavior. Indeed, some suggest that constraint represents
a biologically based system of effortful control that is associated
with conscientiousness and moderates impulsive behavior—
particularly as it relates to health behaviors (50–53). These results
are consistent with recent work completed by Takahashi et al. (24)
demonstrating similar relationship with trait harm avoidance.
Taken together, these results support the hypothesis that estrogen
produced locally in the amygdala contributes to the regulation of
BMI via an intracrine mechanism (54) affecting the ability to in-
hibit feeding behavior in response to stress (55).
This interpretation does not exclude additional mechanisms,

the relative contribution of which may vary with sex and hormonal
status (e.g., menstrual cycle, menopause). To elaborate, ovarian
aromatase activity in premenopausal women, which fluctuates

across the menstrual cycle, is responsible for high (relative to males
and postmenopausal females) although fluctuating levels of es-
trogens in the circulation. Estrogens freely cross the blood–brain
barrier and interact with brain ER. This interaction appears to be
synergistic with that of brain-derived estrogen in suppressing eating
behavior, as evidenced by the inverse correlation between eating
behavior and plasma estrogen across the menstrual cycle (12, 13,
56, 57). It is also possible that, in men, the primary mechanism
responsible for the negative correlation between brain/amygdala
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Fig. 2. [11C]Vorozole in amygdala and trait constraint in men and women. The positive relationship between trait level constraint and aromatase availability
(VT) in amygdala did not significantly differ between men and women. The gray bands represent 95% confidence intervals. VT, distribution volume.

Table 2. Pearson correlations between aromatase amygdala
availability and personality measures

Aromatase availability: amygdala

MPQ personality traits
Total sample

(n = 27)
Men

(n = 12)
Women
(n = 15)

Constraint 0.49** 0.43 0.52*
Control 0.27 −0.02 0.41
Harm Avoidance 0.38 0.17 0.50
Traditionalism 0.24 0.65* 0.05

Note. *Correlation is significant at the P < 0.05 level; **correlation is
significant at the P < 0.01 level.

22964 | www.pnas.org/cgi/doi/10.1073/pnas.2006117117 Biegon et al.

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 N
ov

em
be

r 
29

, 2
02

1 

https://www.pnas.org/cgi/doi/10.1073/pnas.2006117117


www.manaraa.com

aromatase availability and obesity is not only the increase in es-
trogens but also the concomitant decrease in testosterone and
resultant decreased stimulation of brain androgen receptors (ARs).
High levels of ARs appear to present in all of the brain regions
expressing aromatase (58), including amygdala, and AR density is
higher in the male brain relative to the female brain in all regions
tested, while the opposite is true for ER (59–61). Since androgens
increase meal size (62, 63) and estrogen decreases meal size (12,
16), the effect of aromatase on eating behavior is likely to result
from its effect on both hormones, but increased levels of estrogens
exert a stronger effect in females and the concomitant decrease in
testosterone is more important in men.
We did not observe significant sex differences in our study.

Despite greater prevalence of obesity among women (64), weight
loss efficacy appear to be similar (65–67) or favor better longer-
term weight outcomes for women (68), with some evidence of
modest short-term benefits for men (69). This finding also raises
the potential for amygdala aromatase to be a sex-neutral con-
tributor to BMI, although longitudinal analyses are necessary to
determine whether amygdala aromatase levels moderate weight
loss outcomes for obese men and women.
In summary, this study shows a direct correlation between

aromatase availability in the human amygdala and BMI. A potential
extension of this work is to examine other brain regions where es-
trogen was shown to regulate appetite and energy utilization (al-
though some of these are too small to be visualized with the spatial
resolution of available PET scanners) and determine the value of
aromatase measures to discriminate between binge eating and
healthy populations (16) or predict weight changes in adult pop-
ulations. Until direct measures of brain ER and AR density or oc-
cupancy are available for human in vivo studies, aromatase offers an
important measure of the brain estrogen system in men and women.

Methods and Materials
Participants. Forty-three healthy men (n = 19) and women (n = 24), with a
mean age of 40.4 y (range, 21 to 67) and mean BMI of 28 (range, 17 to 49)
responded to advertisements placed in local newspapers or flyers posted and
had brain scans performed in Brookhaven National Laboratory. A subgroup
of 29 participants (17 women, 12 men; mean age, 41.2 ± 16.4 y) also un-
derwent neuropsychological evaluation. All reproductively competent women
were scanned in the follicular phase of the menstrual cycle (5–10 d from the
beginning of menstrual flow). Participants were included if they were healthy
adults and ≤50 BMI. Exclusions included 1) obesity of known genetic or endo-
crine origin; 2) current or history of hypertension, major depression, Parkinson’s
disease, stroke, or diabetes; 3) physical (e.g., brain trauma) or behavioral con-
ditions (e.g., substance abuse) that can alter brain structure and function; 4)
current or past use of hormone replacement therapy or aromatase inhibitors; 5)
positive toxicology screen for psychoactive substance or medication. All par-
ticipants had a full physical, psychiatric, and neurological examination. The
study received human subjects approval from Stony Brook University, and all
participants provided written informed consent prior to participation.

Personality Measures. Participants completed the MPQ (50, 56), a three-
factor, self-report structural model of personality. The MPQ models three
high-order dimensions of personality: Negative Emotionality (constructed
from the subscales: Stress Reaction, Alienation, and Aggression) reflects the
tendency toward emotional distress. Positive Emotionality (constructed from
Well-Being, Social Potency, Achievement, and Social Closeness) reflects an
individual’s positive affect through interpersonal engagement. Constraint
(from Control, Harm Avoidance, and Traditionalism) measures tendency of
self-regulation. For some, Constraint is motivated by avoiding potentially
harmful events or people as in Harm Avoidance and by the need for self-
control, while for others Constraint is motivated by traditional views on sex
roles and justice (65). Studies show that individuals who score low on Con-
straint will score high on measures of impulsivity (65, 66).

PET Scans. PET scans were run on a whole-body positron emission tomograph
(Siemen’s HR+, 4.5 × 4.5 × 4.8 mm at center of field of view) in three-
dimensional dynamic acquisition mode as previously described (34, 35). Briefly,
participants received an injection of [11C]vorozole (3 to 8 mCi; specific
activity >0.1 Ci/μmol at time of injection) andwere scanned for a total of 90min.
Arterial blood samples were obtained and centrifuged to obtain plasma, which
was counted, and selected samples assayed for the presence of unchanged [11C]
vorozole as described previously (34). Circular regions of interest were placed
over the amygdala bilaterally guided by each individual’s MRI and the resultant
time–activity curves and metabolite corrected plasma input function were used
for kinetic analysis and calculation of the total volume of distribution (VT) using
Logan graphic analysis and the two-tissue compartment model, as previously
described in baboons and humans (70, 71). We chose this method, which re-
quires placement of arterial lines, over the simpler alternatives such as calcu-
lating standardized uptake values, as we have recently done when performing
breast imaging with [11C]vorozole in a homogeneous population of elderly
women (72) without arterial input. In this study, we included men and women
with a wide age and BMI range. Biological sex, age, hormonal environment, and
obesity are all likely to affect tracer kinetics and clearance from plasma so it was
considered imperative to obtain individual arterial input functions and conduct
full kinetic analysis to control for these effects.

Statistical Analyses. We used ANOVA and linear regression to model rela-
tionship between amygdala VT and BMI, controlling for age. We also per-
formed two-tailed Pearson correlations between amygdala VT and MPQ
dimensions both across the whole sample and as a function of sex. We
further tested the difference in regression slopes between the separate
personality-by-sex correlations. We set the a priori α level at P < 0.05.

Data Availability. All study data are included in the article and SI Appendix.
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